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Methods of constructing periodic solutions of quasi-linear (autonomous or non-
autonomous) systems of second order equations, based on the Poicare method,
are given in a condensed form, A general case of simple or multiple frequencies
of the generating system in the presence of critical (resonant),null and noncritical
(nonresonant) frequencies is considered, It is assumed that the amplitude equat-
ions have only simple solutions, Two methods of obtaining the coefficients of
expansions of the required functions into series in terms of a small parameter are
given for the autonomous systems,

Unlike the book by Malkin [1] in which the author considers the systems of
first order equations and having obtained the fundamental amplitudes constructs
the solutions by successive integration of the equations, the present paper gives
for each case a ready formula for computing several approximations,

1, Let us consider a quasi-linear qutonomous system with » degrees of freedom

n
2 @+ o) = BF; (@1, Zn, 20,0, 20 B)
k=1
Gy =0y, Cp=ty (GhE=1..n (#.1)

Functions F; (xs, 2,4, ) are assumed to be analytic in z, and z, in their domain of
variation, and also in the small parameter u for the values 0 < p < p,. We also assume
that all roots of the frequency equations of the generating system

A@)=]cy —w¥, | =0 (i, k=1,...,n) (1.2)

are simple and nonnegative, Suppose that these frequencies include, apart from the cri-
tical frequencies, the null frequency as well as the noncritical frequencies, e, g,

r.—_kr(l)() (r=1,...,l—~1), (1)1 =0 ('1.3)

Here k, are positive integers and @, denotes the frequency of the required periodic
solution of the generating system, The noncritical frequencies ®, are denoted by the
subscripts r=1-+41, ..., n.

Let us construct periodic solutions for the quasi-linear system (1,1) with the period
T= Ty+ a, where T, = 2n/ @, is the period of the generating solution and a is a
function of p, vanishing at p = 0.

In [2] it was shown that any solution of a quasi-linear system whose generating system
possesses varying frequencies, has the following structure

= Ay (07
g, )= D pPDw, 0= A e EF=ten (1.4
13

r==1
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where A;, (%) is the algebraic complement of the element ¢;, — w;%, in the determi-
nant A (w,2) of the formula (1,2), The functions 2™ (1) appearing in the solution (1, 4)
have the form [3 - 5]

2 () = (Aro + By) cos o 4 —— ro + fr sin @t +
o l c(r ) l—l ac(") (t)
3 [ev0+3 Gale S 3B et |um

m=1 §=1 8=2
r=1.,1—-1141,.n 1.5
The function z'")(#) is obtained from (1, 5) by performing a limiting passage with w; — 0
2D @) = Ay + 8,4+ By 1+ D) [CP @)+ ] p™ (1.6)

m=1

The initial values of the functions = (¢) and ™ (¢)are Ao + B and Bro+ ¥/ respec-
tively, Moreover, B, and y, supplement the initial values of the generating solution
and vanish when p = 0. Using the autonomous property of (1,1) and the condition of
periodicity of the generating solution we obtain

B10=0, ’rl=0, BZO=0’ I‘JTO:BTO:O (r=l+1,..., n) (1 7)

The functions Cﬁ,? (¢) are obtained from the formulas
t

e =[aw, [1" wi—uh " (AR om0, ¢ —tan
(rs:1 =1, z+01 n) (1.8)
C(l)”)—{A“H ] SRﬁjL)(tl)(t_tl).dtl

0
where the prime accompanying the product symbols denotes that the value s = r (or
s= 1) of the index has been omitted, In addition we have

n
Ao=lay|>0, R @) =2 du(ep) Him ®) (1.9)
i=1
The quantities Hj,, (¢) represent the coefficients of expansion of the functions pF; (s,
zs, p) with §; = y, = 0 into series in powers of the parameter u
1 dm—lFi
Him () = =1y ( dp )Bs=vg=u=o

(1.10)

The first two of H;, (#) in the expanded form are
Hi (t)y = Fy (210,005 Tno, 210 4eee, Znp , 0) (i =1,..., 1)

Tl aF;
'# 3
I{i‘z (t)= 2 < axh )0 kl Z Kazk ) kl < ap' )0 (111)
k=1
The null subscript accompanying the derivatives in parentheses means that these deriva~
tives are taken at §, = y; = p = 0.In general, the functions ¢ (¢) are not periodic
and it can be easily shown that they are analytic functions of the initial values 450 4 P4
and B + vsonly when Ag or B, are not zero [6]. This explains the choice of the
limits of summation with respect to s in (1, 5), The conditions of periodicity of the
solutions of (1,1) are
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e (To4a) = A +8, (r=1,.., 1), & (To4-a) =Py (r =1 +1,...,7)

W Tyt a) =0, 2O (To+a) = Byo -+ 1p (r =200, 1 —1)
£ (Ty 4 a) = 7, (r = L,...,n) (1.12)

We can use one of these conditions, e.g. z‘V (7, + a) = 0 to determine the parameter
a. We shall seek a in the form of a series in §, (s = 1, ..., I)» ¥s(2, ..., L — 1) and p

o -1
_ ONm
a= Z[_N (TOH-Z 04 B, 2m7,+...]pm (1.13)
m=1 §=32
Successive differentiation of the equanon z M T, + a) = 0 with respect to p yields

da 1 ‘)
<—5E 0o Ao ¢y (To) = N1(To)
(1.14)

P 2 . .
(a—w ) =~ 16 (To) + NiC{ D (To)] = 2Ne (T
etc, Let us now expand the left-hand sides of the conditions of periodicity of the funct-
ions &M (&) (r=1,..., 1 —1) and 2 (8) (r = 2, ..., l}in terms of the parameter a and
insert into these expressions the value of o given by (1.13), Discarding from the left -
hand sides of the resulting expressions the factor p.#:O we obtain

Z[ im (T0) +

m==1

'\

]m Ts -] p"M—l =0

(,'= , ,...,21_2) (1.15)
The coefficients My, (T,) are

v (T0) = C{) (To) + N1By, r=1,...,0—1)
(1.16)

M, 1o (To) = C(To) — N1A e (r=2,.,10)

r+l1-2,
The coefficients M;, (T;) accompanying u are
M,y (To) = C§ (To) + N:1C [ (To) + NiBpy — oN2 Aoy (r =1, 1— 1)
(To) = C7 (To) + NiC, 7 (To) — NaApoy® — /2N *Bryoy®
r=2,..,1) (147

etc, In (1,16) and (1,17) we must set Byy = Bio = 0.

Equating the constant terms in the conditions (1,15) to zero and assuming that f, (0) =
= y; (0) = 0, we obtain

M

r+1-2,2

CP () =0, C (To)+NBy, =0
(r=2,.,1—1) (1.18)
(1) — Nidpo2 =0, C D (1) =0
The above equations yield the amplitudes Ay, ..., 4 10 Bro,..., B, , of the generating
solution, In the present paper we shall consider only the cases in which the functional
determinant of the emplitude equations differs from zero
D (M1, Myyyees Myy_g5)

= 0 149
D (Ao Ay, By Brng) T (1-49)

for the values of the amplitudes obtained. j, e, when the system of equations (1, 18) has
simple solutions, The parameters Bc and ys are expanded into series in integral
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powers of p

Bo= ) Agmb™ (s=1,0])y Ye= N Bumb™ (s =2,..1—1) (1.20)
m==1 m=1

Let us substitute these expansions into (1,15) and equate to zero the coefficients of like
powers of p. Since the coefficients accompanying w in (1,15) are zeros, we obtain the
following equations for the coefficients 4, and B,

t -1

oM . oM,
2 1 4 +2 AB +M, (T)y=0 (j=1,.,21—-2 1.24
a=1 0Ag . 8=9 0Bg, s Jz( " u ) ( )

Similarly we obtain the coefficients A4 and B,, All equations for Agn and Bey are
linear and have the same determinant A* = 0.

Inserting the expansions for f, and y, into (1,13) and collecting the terms of like
power in L, we obtain

- !
a=T 2 Bp™, hi == Ni(T0) 1.22)
m=1
To construct a periodic solution of (1,1) with the period independent of i and equal
to T4, we perform the following substitution of the independent variable

o
t = (1 4 Z hmp"‘) T (1.23)
m=1
When the condition (1,19) holds, all functions 2" (t) can be expanded into a series
in integral powers of p
=W FpV (D r=1..0) (4.24)

The coefficients of this series are  7,-periodic functions of T .For the critical frequen-
cies we have

By .
"((,r) (1) = Ay c08 0T + m—'“ sin w,T
T

B .
2 () = A, cos ;T + mr: $in @7+ C{7 (8} + Art (Byy €08 0T — Aryy sin wy7) (4.25)

Blo=Bu=...=0 (f=1,..., l—i)

2, We now construct a function = (f) corresponding to the frequency w; = 0. Formula
(1. 6) represents the general form of this function and the value of CSQ (¢) can be found
from the second formula of (1, 8),

The process of computing the parameter ) = y; represents a specific feature in construc=-
ting the function =¥ (#) . It can easily be seen that X is an analytic functior of the same
parameters as all functions C'7} () as well as of the parameter p. Consequently the par-
ameter ¥ can be written in the form [4]

o 1 - -1
%= Z[Sm+2 %’i—sm Z%T.Jr...]um (2.0)
m=1 8=1 §=2

Let us substitute this expression into the conditions of periodicity of W (Ty + a) =
= Ay + Pi and equate to zero the coefficients of like powers of j. We obtain

ToS1+CP To) =0,  ToSa+ Ni§14CP (To) =0 2.2)
which will yield, successively, all Sp,.
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Let us now introduce another function
i — (1 2.:
O (1) = CP (1) + Smt (2.3)

Then we can write the following expression for the iunction z(” (&)

acO* (1) T ac* )

7 )* et ™ .

#® @)= A+, + 2 [c@ o+ Z—-—-———»—Bs—k- > e Jom @
m===1 8=2

After the substitution ¢ = ht the function =¥ () has the period equal to T, and can be

expanded into the series (1, 24), The first two coefficients of this series are

D= B 0=+ @ @

3, Finally we construct the functions =z (#) corresponding to the noncritical frequ-
encies o, {r = I+ 1, ..., n). The method of computing the parameters ¢,_; = P, and
Yr; = vr for r = {-+1, .., nrepresents a specific feature of this process, The parameters
®r-; and v,_; are analytic functions of the same quantities as the parameter ¥ discussed
in Sect, 2, We therefore have [5, 6)

o Logpu-D -1 g p(r-D ,
0= D[P0+ 3 bt D vk b
me=l §=1 =32
(r=1041..n 3.1

and another analogous expression for the parameter ¥,_; depending on the quantity

Qfr=D.  Let us insert these expressions into the conditions of periodicity (1,12) and equate
to zero the coefficients of like powers of j. This yields two equations for P and
o

Let us introduce new functions
(r-1)

COr i) = €0 (1) + PUD cos wpt + o sin @yt
(r=14+1,..an (3.2)
and the auxilliary functions W, © (?) the values of which for m = 1 and 2 are
WD ) =c{ @), WD @) =cP @)+ NC @) (3.3)

Solving the above system of equations we obtain

T
peD = % LW”’” (To) + 5 otg —5— WD (Tn)}
%{W GD (1) — op ctg 2L WD (T, )]
r=1+4+1.,n (3.4)
and we use these formulas to compute the successive values of P¥~D and QI-D,
The above arguments imply that the functions = (2) for r=1- 1, ..., » can be
written in the form

..l___
o =

m . i (r)* ) -1 acg)* {t)
“y= [C‘” -+ 2 WBS%— D 3B, T ] wm 3.5)
‘Ml =%

After the transformation of the 1ndependent variable t = ht we find the first two coeff-
icients of the expansion (1, 24) which are
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@=0 P @=C"® (=l+1..0) 39)

We compute the function Cky (1) using the second formula of (1,11) for Hj, (#). By the
definition of Hj,, (¢)given in (1.10) the functions Cku () should be computed according
to the formula

Cru () = 2 PC 0+ 2 PC ) k=t.mu=1f.,m—1) @7
r=l
Here the function ij (1) is determined from (2, 3) and the functions ¢{"* (1) for r =
== |41, ..., n by (3,2). Thus we find that the quantities H;,, (?) represent a connecting
element when the coefficientsz! (v)of the expansion (1, 24) of the functions '/ (1) are
computed from various groups,

4, Expressions for the coefficients of the series (1, 24) can be obtained in a different
form, To do this, we transform (1,1) to quasi~normal coordinates and make the substi-
tution ¢ = ht(1,23), We shall assume %4 to be a known analytic function of the param=~
eter n. We have

2 (1) = 27 (1), hz M (1) = " (1) 4.1)
As the result of the transformations the system (1, 1) becomes [7]
Z(T)" + @y 22(3") —_ p'(p(r) {Z(S) z(s} p} (42)
The initial conditions for the functions s (x) and their first order derivatives are
0 = A +Br 2 O)=h(Br+ 10) 4.3)

The autonomous property of the system and the conditions of periodicity of the genera-
ting solution yield the results (1, 7) obtained previously, The functions 3™ (t) can be
written in the form

57 (v) = (A + By) cos o,7 + M sin 0,7 +
i (r) -1 {r)
(t) aém (X)
n Z [c0 @+ 2 + S p et ]em @4
m==} 82

When r = I we obtain an expression for z(” (r) analogous to (1,6), Making use of the
relations connecting the right-hand sides of the equations written in quasi-normal coord-
inates z™(#) and z("(x), we can obtain the relations connecting the functions C{(v)
and C$)(x) directly,

In the new variables the amplitude equations become

T @y =0 (r="1uw,l—1), TN Ty =0 (r=2,.,0) (4.5)
Functions 2" (1) are expanded into series in integral powers of i
D=+ @ 0 =10 (4.6)
Let us bring in new functions ¢ (x) for the null frequency, with r =1
PR =CH @ +Smt,  Spm=— %; TW (Ty) 4.7
and for the noncritical frequencies with r=1-41, ..., n

-0

OO* (5) =00 (v) + PP cos oyt +- Sin®,T (4.8)

r
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Here
po = {U(”) (To) +-—-— ctg —— m’?“ ooy m)}
Cr=141,. .m0
“S;'l) = —;— [Cﬁg)' (Ta) — wp ctg (1)_,27’0_ Eg“‘) (T's) ’ (©.9)
Then the first two coefficients z{!) (1) of the series (4, 6) are
27 (1) = Ay, cos wpt 4 —B—— sin w,T
2" (1) = Ap1 cos w,7 + M sin oyt +, 07 (1)
Biw=By=0 (r-1, L =1} .10

2 () = {) (@)= A, + " )
% (1) =0, "’ (1) = E‘”* ®  =lt1.7)
The following coefficients, e, g z(” (t) are noticeably simpler than 207 (z). All terms
in the coefficients 2\’ (v) are exther constants, or T,-periodic functions of 7,

5, We consider the case when the frequency equation (1, 2) has multiple roots, Supp-
ose that one of these roots has multiplicity d,e.g, 0*= o = ... = 042

The presence of multiple frequencies affects only the structure of the solutions of (1,1),
In the present case the structure becomes [4]

d n
wp ()= D g2ty D) PP (1) (5.1)
r=1 r=d41

The functions «V” ( t) remain unchanged and can be represented by the series (1, 24) the
coefficients of which are determined, in different cases, by the formulas (1,25}, (2, 5)
and (3.6). As before, the formula (1,4) is used to compute the coefficients p{’ , The
coefficients ¢’ for r, x =1, ..., d are
gD =1 =k, =0 (k) (5.2)
As we know [8], the amplitudes A{7) and B{) appearing in the particular solutions of
the generating system (1.1) are determined from
kt)
Z (ean — o%az) AL =0, 2 (i — wpaz) B =0 (5.3)
k=1 =
In the case of a2 multiple root w® = 1® of Eq, (1,2) only n — d equatjons in each of the
systems (5, 3) are independent, the remaining d equations depend on these n — d equa-
tions, Let us arrange the equations in (5, 3) so that the first ¢ equations follow from the
remaining n — d equations, Solving the set of the last » — d equations for AY, 2L or oo
vee, A withi=d -1, ..., nand 0= @ we obtain

AL = gll). q}} gAY k=d41,...,0) (5.4)

and the coefficients gy’ (= 1, ...,d; k= d -1, ..., n) are determined from these
relations,

8. Consider finally a quasilinear, nonautonomous system with- » degrees of freedom,

Z (A, Tt eipay) = [ () A BEL (2, Ely ey Ty 21y er Tn's 1)
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Gp=ayp =20 (=1...,n) (6.4)

We assume that the functions F; (1, #s, ', ) are analytic in x,, z; and u.just as in the
case of the autonomous systems, Moreover, these functions as well as functions f; (2)
are continuous, 2n-periodic functions of 1 ,

Suppose that the roots of the frequency equation of the generating system (1, 2) are
simple and nonnegative, lete,g,

©r =k, r=1,...,1—-1), w;=0 (6.2)

where &, are positive integers, The frequencies @, r = ¢ + 1, ..., n are nonresonant,

The necessary condition for the periodic solutions of (6,1) to exist is the absence of
the harmonics of order %, in the functions f; (#) . If the frequencies of the generating
system do not include the frequency k. = 1, then periodic solutions of (6,1) can be con-
structed, with the period T = 2n. These solutions represent one of the forms of oscillat-
ions occurring near the principal resonance, The solutions have the following structure

n
ok () =9k (0 + D) P27 (1) (6.3)
r=1
Functions ¢ (t) represent a particular solution of the generating system (6,1), The co-
efficients p{’ are determined from the formula (1, 4) and the functions 2"/ () have the

form [9] 2 (1) = (Aps + By) cOs @, ’M sin gt +
7‘
H —1
acto (t) ac (1) '
C(T) f) 0 :
+2 ® +2 —o8e+ s% S Tot o BT (6.4)

In contrast to the autonomous system, the summation of the products containing the
parameter y; raised to various powers is performed in the nonautonomous system from
s = 1to s = I — 1. The passage to the limit as w; — 0 in (6, 4) yields the function 29 (1).
The functions C{) () are determined from the formulas (1, 8) — (1.11) and (3, 7).

As the system (6,1) is nonautonomous, the conditions of periodicity of its solutions
differ slightly from (1,12) and are

Q)= A +B8r r=1...,0 zP@1)=8, (r=I0+1,...,n)
@ @y=Bu+1 (=1,...,0—1), zO0en=1, =1...,n. 5
They can also be written in the form
S o . 5 2w 1 6.6)
r - = .
Z[C (2n+26AqB+§JanT‘+ ] =0 (
m=1 =1 §=1
r=1,...,1—-1)
together with an analogous formula for the derivative C'(,;) (2n) for r = 1, ..., . This
yields the following amplitude equations:
CNEy=0 (r=1,...,1—1), CPEH=0 (=1,...,0 (6.7)
from which we can find the following 2! — 1 amplitudes: A4,,, ..., 4yy: Bigs -» By .
When the functional determinant of (6. 7) is not zero, the parameters f; (s = 1, ..., {)
and y; (s = 1, ..., I — 1) are expanded into series in integral powers of p (1,20), For

the coefficients As; and #;; we have the following equations:
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{ ac(") -1 5¢ (7‘)
D A Ant D GEs But CPeN =0 =1, 01 68
8 =1 =1
while for r = 1, ..., I we have analogous equations in which c(’) {(2n) are replaced byC’m

(2n). The functlons x(‘)(t) and V(0 for r=1-1,.., n are constructed in the same way
as in the autonomous system, The parameters X, ¢,_, and ¢, _, are given in the form
of expansions analogous to (2, 1) and (3,1), Summation of the products containing various
powers of the parameters f; and ys is performed in these expansions over the same
limits as in those of (6,4), and the remaining formulas are unchanged,

The functions z("(z) can be expanded into series in integral powers of p

="V O+ r=1,...,n) (6.9)

Here the coefficients #\,)(¢) are analogous to the coefficients :0(x) in (4, 9) provided
that in the latter formulas /() and C{’"(v) are replaced by C()(t) and €%)(#) and
that the condition B,, = B;; = 0 is discarded,

When the frequency equation (1, 2) has multiple roots w? = @.?= ... = g4’ in the case
of the nonautonomous system, only the structure of solution is affected and takes the
form d n

Ty (£} = @y () +- 2 97 @M ) 4 2 ™ (1) (6.10)
r=1 r=d41

The values of the coefficients q( 7 are given in Sect, 5,

BIBLIOGRAPHY

1. Malkin I,G,, Some Problems in the Theory of Nonlinear Oscillations, M, ,
Gostekhizdat, 1956,

2, Proskuriakov A,P,, On a property of periodic solutions of quasi-linear auto-
nomous systems with several degrees of freedom, PMM Vol, 24, N4, 1960,

3, Proskuriakov A,P,, Periodic oscillations of quasi-linear autonomous systems
with two degrees of freedom, PMM Vol, 24, N6, 1960,

4, Proskuriakov A,P,, Construction of periodic solutions of quasi-linear autono~
mous systems with several degrees of freedom for particular cases, PMM Vol, 27,
N6, 1963,

5.Proskuriakov A, P,, On the construction of periodic solutions of quasi~-linear
autonomous systems with several degrees of freedom, PMM Vol, 26, N2, 1962,

6, 'Proskuriakov A,P,, The structure of periodic solutions of a quasi-linear auto-
nomous system with several degrees of freedom in the case of differing but partly
noncommensurable frequencies, PMM Vol, 32, N3, 1968,

7. Proskuriakov A, P,, Stability of single-frequency periodic solutions of quasi-
linear autonomous systems with two degrees of freedom, PMM Vol 29, N*5,1965,

8, Lamb H,, Higher Mechanics, 2nd ed,, Univ, Press, Cambridge, 1929,

9. Plotnikova G, V., On the construction of periodic solutions of 2 nonautonomous
quasi-linear systems with two degrees of freedom, PMM Vol, 24, N5, 1960,

Translated by L, K,



